Relacionando números racionais com frações
Um número racional é o que pode ser escrito na forma
| m n |
|---|
onde m e n são números inteiros, sendo que n deve ser não nulo, isto é, n deve ser diferente de zero. Frequentemente usamos m/n para significar a divisão de m por n. Quando não existe possibilidade de divisão, simplesmente usamos uma letra como q para entender que este número é um número racional.
Como podemos observar, números racionais podem ser obtidos através da razão (em Latim: ratio=razão=divisão=quociente) entre dois números inteiros, razão pela qual, o conjunto de todos os números racionais é denotado por Q. Assim, é comum encontrarmos na literatura a notação:
Q = {m/n : m e n em Z, n diferente de zero}
Quando há interesse, indicamos Q+ para entender o conjunto dos números racionais positivos e Q_ o conjunto dos números racionais negativos. O número zero é também um número racional.
No nosso link Frações já detalhamos o estudo de frações e como todo número racional pode ser posto na forma de uma fração, então todas as propriedades válidas para frações são também válidas para números racionais. Para simplificar a escrita, muitas vezes usaremos a palavra racionais para nos referirmos aos números racionais.
Dízima periódica
Uma dízima periódica é um número real da forma:
m,npppp...
onde m, n e p são números inteiros, sendo que o número p se repete indefinidamente, razão pela qual usamos os três pontos: ... após o mesmo. A parte que se repete é denominada período.
Em alguns livros é comum o uso de uma barra sobre o período ou uma barra debaixo do período ou o período dentro de parênteses, mas, para nossa facilidade de escrita na montagem desta Página, usaremos o período sublinhado.
Exemplos: Dízimas periódicas
0,3333333... = 0,3
1,6666666... = 1,6
12,121212... = 12,12
0,9999999... = 0,9
7,1333333... = 7,13
Uma dízima periódica é simples se a parte decimal é formada apenas pelo período. Alguns exemplos são:
0,333333... = 0,(3) = 0,3
3,636363... = 3,(63) = 3,63
Uma dízima periódica é composta se possui uma parte que não se repete entre a parte inteira e o período. Por exemplo:
0,83333333... = 0,83
0,72535353... = 0,7253
Uma dízima periódica é uma soma infinita de números decimais. Alguns exemplos:
0,3333...= 0,3 + 0,03 + 0,003 + 0,0003 +...
0,8333...= 0,8 + 0,03 + 0,003 + 0,0003 + ...
4,7855...= 4,78 + 0,005 + 0,0005 + ...
A conexão entre números racionais e números reais
Um fato importante que relaciona os números racionais com os números reais é que todo número real que pode ser escrito como uma dízima periódica é um número racional. Isto significa que podemos transformar uma dízima periódica em uma fração.
O processo para realizar esta tarefa será mostrado na sequência com alguns exemplos numéricos. Para pessoas interessadas num estudo mais aprofundado sobre a justificativa para o que fazemos na sequência, deve-se aprofundar o estudo de séries geométricas no âmbito do Ensino Médio ou mesmo estudar números racionais do ponto de vista do Cálculo Diferencial e Integral ou da Análise na Reta no âmbito do Ensino Superior.
A geratriz de uma dízima periódica
Dada uma dízima periódica, qual será a fração que dá origem a esta dízima? Esta fração é de fato um número racional denominado a geratriz da dízima periódica. Para obter a geratriz de uma dízima periódica devemos trabalhar com o número dado pensado como uma soma infinita de números decimais. Para mostrar como funciona o método, utilizaremos diversos exemplos numéricos.
Seja S a dízima periódica 0,3333333..., isto é, S=0,3. Observe que o período tem apenas 1 algarismo. Iremos escrever este número como uma soma de infinitos números decimais da forma:
S = 0,3 + 0,03 + 0,003 + 0,0003 + 0,00003 +...
Multiplicando esta soma "infinita" por 101=10 (o período tem 1 algarismo), obteremos:
10 S = 3 + 0,3 + 0,03 + 0,003 + 0,0003 +...
Observe que são iguais as duas últimas expressões que aparecem em cor vermelha!
Subtraindo membro a membro a penúltima expressão da última, obtemos:
10 S - S = 3
donde segue que
9 S = 3
Simplificando, obtemos:
| S = | 1 3 |
= 0,33333... = 0,3 |
|---|
Exercício: Usando o mesmo argumento que antes, você saberia mostrar que:
0,99999... = 0,9 = 1
Vamos tomar agora a dízima periódica T=0,313131..., isto é, T=0,31. Observe que o período tem agora 2 algarismos. Iremos escrever este número como uma soma de infinitos números decimais da forma:
T =0,31 + 0,0031 + 0,000031 +...
Multiplicando esta soma "infinita" por 10²=100 (o período tem 2 algarismos), obteremos:
100 T = 31 + 0,31 + 0,0031 + 0,000031 +...
Observe que são iguais as duas últimas expressões que aparecem em cor vermelha, assim:
100 T = 31 + T
de onde segue que
99 T = 31
e simplificando, temos que
| T = | 31 99 |
= 0,31313131... = 0,31 |
|---|
Um terceiro tipo de dízima periódica é T=7,1888..., isto é, T=7,18. Observe que existe um número com 1 algarismo após a vírgula enquanto que o período tem também 1 algarismo. Escreveremos este número como uma soma de infinitos números decimais da forma:
R = 7,1 + 0,08 + 0,008 + 0,0008 +...
Manipule a soma "infinita" como se fosse um número comum e passe a parte que não se repete para o primeiro membro para obter:
R-7,1 = 0,08 + 0,008 + 0,0008 +...
Multiplique agora a soma "infinita" por 101=10 (o período tem 1 algarismo), para obter:
10(R-7,1) = 0,8 + 0,08 + 0,008 + 0,0008 +...
Observe que são iguais as duas últimas expressões que aparecem em cor vermelha!
Subtraia membro a membro a penúltima expressão da última para obter:
10(R-7,1) - (R-7,1) = 0,8
Assim:
10R - 71 - R + 7,1 = 0,8
Para evitar os números decimais, multiplicamos toda a expressão por 10 e simplificamos para obter:
90 R = 647
Obtemos então:
| T = | 647 90 |
= 7,1888... = 7,18 |
|---|
Um quarto tipo de dízima periódica é T=7,004004004..., isto é, U=7,004. Observe que o período tem 3 algarismos, sendo que os dois primeiros são iguais a zero e apenas o terceiro é não nulo. Decomporemos este número como uma soma de infinitos números decimais da forma:
U = 7 + 0,004 + 0,004004 + 0,004004004 +...
Manipule a soma "infinita" como se fosse um número comum e passe a parte que não se repete para o primeiro membro para obter:
U-7 = 0,004 + 0,004004 + 0,004004004 +...
Multiplique agora a soma "infinita" por 10³=1000 (o período tem 3 algarismos), para obter:
1000(U-7) = 4 + 0,004 + 0,004004 + 0,004004004 +...
Observe que são iguais as duas últimas expressões que aparecem em cor vermelha!
Subtraia membro a membro a penúltima expressão da última para obter:
1000(U-7) - (U-7) = 4
Assim:
1000U - 7000 - U + 7 = 4
Obtemos então
999 U = 6997
que pode ser escrita na forma:
| T = | 6997 999 |
= 7,004004... = 7,004 |
|---|
Números irracionais
Um número real é dito um número irracional se ele não pode ser escrito na forma de uma fração ou nem mesmo pode ser escrito na forma de uma dízima periódica.
Exemplo: O número real abaixo é um número irracional, embora pareça uma dízima periódica:
x=0,10100100010000100000...
Observe que o número de zeros após o algarismo 1 aumenta a cada passo. Existem infinitos números reais que não são dízimas periódicas e dois números irracionais muito importantes, são:
e = 2,718281828459045...,
Pi = 3,141592653589793238462643...
que são utilizados nas mais diversas aplicações práticas como: cálculos de áreas, volumes, centros de gravidade, previsão populacional, etc...
Exercício: Determinar a medida da diagonal de um quadrado cujo lado mede 1 metro. O resultado numérico é um número irracional e pode ser obtido através da relação de Pitágoras. O resultado é a raiz quadrada de 2, denotada aqui por R[2] para simplificar as notações estranhas.
Representação, ordem e simetria dos racionais
Podemos representar geometricamente o conjunto Q dos números racionais através de uma reta numerada. Consideramos o número 0 como a origem e o número 1 em algum lugar e tomamos a unidade de medida como a distância entre 0 e 1 e por os números racionais da seguinte maneira:

Ao observar a reta numerada notamos que a ordem que os números racionais obedecem é crescente da esquerda para a direita, razão pela qual indicamos com uma seta para a direita. Esta consideração é adotada por convenção, o que nos permite pensar em outras possibilidades.
Dizemos que um número racional r é menor do que outro número racional s se a diferença r-s é positiva. Quando esta diferença r-s é negativa, dizemos que o número r é maior do que s. Para indicar que r é menor do que s, escrevemos:
r < s
Do ponto de vista geométrico, um número que está à esquerda é menor do que um número que está à direita na reta numerada.
Todo número racional q exceto o zero, possui um elemento denominado simétrico ou oposto -q e ele é caracterizado pelo fato geométrico que tanto q como -q estão à mesma distância da origem do conjunto Q que é 0. Como exemplo, temos que:
(a) O oposto de 3/4 é -3/4. (b) O oposto de 5 é -5.
Do ponto de vista geométrico, o simétrico funciona como a imagem virtual de algo colocado na frente de um espelho que está localizado na origem. A distância do ponto real q ao espelho é a mesma que a distância do ponto virtual -q ao espelho.
Módulo de um número racional
O módulo ou valor absoluto de um número racional q é maior valor entre o número q e seu elemento oposto -q, que é denotado pelo uso de duas barras verticais | |, por:
|q| = max{-q,q}
Exemplos: |0|=0, |2/7|=2/7 e |-6/7|=6/7.
Do ponto de vista geométrico, o módulo de um número racional q é a distância comum do ponto q até a origem (zero) que é a mesma distância do ponto -q à origem, na reta numérica racional.
A soma (adição) de números racionais
Como todo número racional é uma fração ou pode ser escrito na forma de uma fração, definimos a adição entre os números racionais a/b e c/d, da mesma forma que a soma de frações, através de:
| a b |
+ | c d |
= | ad+bc bd |
|---|
Propriedades da adição de números racionais
Fecho: O conjunto Q é fechado para a operação de adição, isto é, a soma de dois números racionais ainda é um número racional.
Associativa: Para todos a, b, c em Q:
a + ( b + c ) = ( a + b ) + c
Comutativa: Para todos a, b em Q:
a + b = b + a
Elemento neutro: Existe 0 em Q, que adicionado a todo q em Q, proporciona o próprio q, isto é:
q + 0 = q
Elemento oposto: Para todo q em Q, existe -q em Q, tal que
q + (-q) = 0
Subtração de números racionais: A subtração de dois números racionais p e q é a própria operação de adição do número p com o oposto de q, isto é:
p - q = p + (-q)
Na verdade, esta é uma operação desnecessária no conjunto dos números racionais.
A Multiplicação (produto) de números racionais
Como todo número racional é uma fração ou pode ser escrito na forma de uma fração, definimos o produto de dois números racionais a/b e c/d, da mesma forma que o produto de frações, através de:
| a b |
× | c d |
= | ac bd |
|---|
O produto dos números racionais a e b também pode ser indicado por a × b, axb, a.b ou ainda ab sem nenhum sinal entre as letras.
Para realizar a multiplicação de números racionais, devemos obedecer à mesma regra de sinais que vale em toda a Matemática:
(+1) × (+1) = (+1) (+1) × (-1) = (-1) (-1) × (+1) = (-1) (-1) × (-1) = (+1)
Podemos assim concluir que o produto de dois números com o mesmo sinal é positivo, mas o produto de dois números com sinais diferentes é negativo.
Propriedades da multiplicação de números racionais
Fecho: O conjunto Q é fechado para a multiplicação, isto é, o produto de dois números racionais ainda é um número racional.
Associativa: Para todos a, b, c em Q:
a × ( b × c ) = ( a × b ) × c
Comutativa: Para todos a, b em Q:
a × b = b × a
Elemento neutro: Existe 1 em Q, que multiplicado por todo q em Q, proporciona o próprio q, isto é:
q × 1 = q
Elemento inverso: Para todo q=a/b em Q, q diferente de zero, existe q-1=b/a em Q, tal que
q × q-1 = 1
Esta última propriedade pode ser escrita como:
| a b |
× | b a |
= 1 |
|---|
Divisão de números racionais: A divisão de dois números racionais p e q é a própria operação de multiplicação do número p pelo inverso de q, isto é:
© 2011 Todos os direitos reservados.